Curriculum Overview: Key Stage 3 Science

Please see the department MTP for a more in depth scheme of work.

<table>
<thead>
<tr>
<th>Year</th>
<th>Term</th>
<th>Unit/s of Work</th>
<th>Core Knowledge & Concepts</th>
</tr>
</thead>
</table>
| 7 | 1 | 1A Unit 7.1 Living Things | ● The characteristics common to all living things, and their importance to the survival of the organism.
● That all living things are made of cells, the structure and typical cells, how cells are adapted to their function.
● How cells are organised into tissues, organs and organ systems to efficiently carry out the functions of life. |
| | | 1B Unit 7.2 Solids, Liquids and Gases | ● Students build on their previous knowledge of states of matter |
| | | 1C Unit 7.3 Energy Transformations | ● Different types of energy.
● Energy as something that cannot be created or destroyed.
● Energy transfers. |
| 2 | 2A | Unit 7.4 Microorganisms and Disease | ● How some microorganisms can be useful to humans but others are harmful.
● The use of microorganisms in food production.
● How microorganisms breakdown can cause decay.
● The work of Louis Pasteur and other scientists studying the human body. |
| | 2B | Unit 7.5 The Earth and Beyond | ● The different type of rocks and soils.
● Simple models of the internal structure of the Earth.
● Fossils and the fossil record as a guide to estimating the age of the Earth.
● How the movement of the Earth causes the apparent daily and annual movement of the Sun and the stars.
● The relative positions and movement of the planets and the Sun in the solar system.
● The impact of the ideas and discoveries of Copernicus, Galileo and more recent scientists.
● The Sun and other stars as sources of light, and that planets and other bodies are seen by reflected light. |
| | 2C | Unit 7.6 Putting Things into Groups | ● Metals and non-metals.
● Everyday materials and their physical properties.
● Classify animals and plants into major groups, using some locally occurring examples.
● Understand what is meant by a species.
● Investigate variation within a species. |
| 3 | 3A | Unit 7.7 Habitats and Environment | ● Where organisms live.
● How organisms interact with each other and the environment.
● The influences humans have on the natural environment. |
| | 3B | Unit 7.8 Acids and Bases | ● How to tell if a solution is an acid or an alkali.
● Using a pH scale.
● Neutralisation and some of its applications. |
| | 3C | Unit 7.9 Forces and their Effects | ● The effects of forces on movement, including friction and air resistance.
● The effects of gravity on objects. |
| 8 | 1 | 1A Unit 8.1 Obtaining Food | ● The need of plants for carbon dioxide, water and light for photosynthesis and that this process makes biomass and oxygen
● The constituents of a balanced diet and the functions of various nutrients
● The effects of nutritional deficiencies
● The relationship between diet and fitness
● The organs and functions of the alimentary canal
● The function of enzymes |
| | | 1B Unit 8.2 Elements, Mixtures and Compounds | ● Changes of state, gas pressure and diffusion.
● The chemical symbols for the first twenty elements of the Periodic Table. |

At ASCOT, students develop according to their needs in a welcoming, family environment. The challenging curriculum enables our students to become adaptable lifelong learners. Our intercultural ethos strives to promote a strong sense of respect for all.
<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1C | Unit 8.3 Light | - Elements, compounds and mixtures.
- How light travels and the formation of shadows.
- How non-luminous objects are seen.
- Reflection at a plane surface and use the law of reflection.
- Refraction at the boundary between air and glass or air and water.
- The dispersion of white light.
- Colour addition and subtraction, and the absorption and reflection of coloured light. |
| 2 | Unit 8.4 Respiration and Circulation | - How water and mineral salts are absorbed and transported in flowering plants.
- They also develop their knowledge of transporting chemicals in humans by finding out about
- The basic components of the circulatory system and their functions.
- The basic components of the respiratory system and their functions.
- Gaseous exchange.
- The effects of smoking.
- Aerobic respiration. |
| 2B | Unit 8.5 Metals, Non-metals and Corrosion | - The differences between metals and non-metals.
- Chemical reactions which are not useful.
- Word equations. |
| 2C | Unit 8.6 Sound | - The properties of sound in terms of movement of air particles.
- The link between loudness and amplitude, pitch and frequency.
- The human reproductive system, including the menstrual cycle, fertilisation and foetal development.
- The physical and emotional changes that take place during adolescence.
- How conception, growth, development, behaviour and health can be affected by diet, drugs and disease. |
| 3A | Unit 8.7 Reproduction and Growth | - Some common compounds including oxides, hydroxides, chlorides, sulphates and carbonates.
- Using word equations to describe a reaction. |
| 3B | Unit 8.8 Chemical Reactions | - Speed including interpreting simple distance/time graphs.
- How magnetism can be used to move things. |
| 3C | Unit 8.9 Forces and Magnets | - The process of photosynthesis including the word equation.
- The importance of water and mineral salts to plant growth.
- The structure of an atom.
- The methods and discoveries of Rutherford and other scientists.
- The structures of the first twenty elements of the Periodic Table.
- Trends in groups and periods.
- Preparing some common salts by the reactions of metals or metal carbonates with acid.
- Writing word equations to describe reactions of metals or metal carbonates with acids. |
| 1B | Unit 9.2 The Periodic Table and Preparing Salts | - Electrostatics and the concept of charge, including digital sensors.
- Simple series and parallel circuits.
- How common types of component, including cells (batteries), affect current.
- How current divides in parallel circuits.
- Measuring current and voltage.
- Sexual reproduction in flowering plants including pollination, fertilisation, seed formation and dispersal. |
| 1C | Unit 9.3 Electrostatics and Electric Currents | - The reactivity series of metals with oxygen, water and dilute acids.
- Displacement reactions.
- The effects of concentration, particle size, temperature and catalysts on the rate of a reaction. |
| 2A | Unit 9.4 Sexual Reproduction in Flowering Plants | - Objects turning on a pivot and understand the principle of moments.
- Pressure as caused by the action of force on an area.
- Pressures in gases and liquids (qualitative only).
- The densities of solids, liquids and gases. |
| 2B | Unit 9.5 Reactivity and Rates of Reaction | - Preparing some common salts by the reactions of metals or metal carbonates with acid.
- Preparing word equations to describe reactions of metals or metal carbonates with acids. |
| 2C | Unit 9.6 Movements, Pressure and Density | - Electrostatics and the concept of charge, including digital sensors.
- Simple series and parallel circuits.
- How common types of component, including cells (batteries), affect current.
- How current divides in parallel circuits.
- Measuring current and voltage.
- Sexual reproduction in flowering plants including pollination, fertilisation, seed formation and dispersal.
- The reactivity series of metals with oxygen, water and dilute acids.
- Displacement reactions.
- The effects of concentration, particle size, temperature and catalysts on the rate of a reaction. |

At ASCOT, students develop according to their needs in a welcoming, family environment. The challenging curriculum enables our students to become adaptable lifelong learners. Our intercultural ethos strives to promote a strong sense of respect for all.
At ASCOT, students develop according to their needs in a welcoming, family environment. The challenging curriculum enables our students to become adaptable lifelong learners. Our intercultural ethos strives to promote a strong sense of respect for all.

Curriculum Overview: Combined Science

Please see the department MTP for a more in depth scheme of work.

<table>
<thead>
<tr>
<th>Year</th>
<th>Term</th>
<th>Unit/s of Work</th>
<th>Core Knowledge & Concepts</th>
</tr>
</thead>
</table>
| 10 | 1 | Cells and cell processes | ● Characteristics of Living Things
 ● Cell structure
 ● Movement in and out of cells
 ● Enzymes |
| | | Animal nutrition | ● Biological molecules
 ● Diet
 ● Alimentary canal
 ● Digestion |
| | | Experimental techniques | ● Measurement
 ● Criteria of purity
 ● Methods of purification |
| | | Particles, atomic structure, ionic bonding and the Periodic Table | ● The particulate nature of matter
 ● Atomic structure and the periodic table
 ● Elements, compounds and mixtures
 ● Physics and chemical changes
 ● Properties of metals
 ● Ions and ionic bonds
 ● Energy changes in chemical reactions
 ● The periodic table
 ● Periodic trends
 ● Stoichiometry
 ● Group properties |
| | | Light | ● Reflection of light
 ● Refraction of light
 ● Thin converging lens |
| | | Electricity 1 | ● Current, potential difference and electromotive force
 ● Resistance
 ● Electrical energy |
| 2 | 1 | Plant nutrition and transport | ● Plant nutrition
 ● Transport in plants |
| | | Air and water | ● Water
 ● Air
 ● Noble gases
 ● Carbon dioxide and methane
 ●
At ASCOT, students develop according to their needs in a welcoming, family environment. The challenging curriculum enables our students to become adaptable lifelong learners. Our intercultural ethos strives to promote a strong sense of respect for all.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaborate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Communicate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Respect</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **Acids, bases and salts** | • Stoichiometry
• The characteristic properties of acids and bases
• Preparation of salts
• Identification of ions and gases |
| **Energy** | |
| **3** | Respiration and transport in mammals
• Respiration
• Gas exchange
• Transport in mammals |
| **Reaction rates** | |
| | • Rate of reaction
• Energy changes in chemical reactions |
| **Metals and the reactivity series** | • Properties of metals
• Reactivity series
• Extraction of metals from their ores
• Transition elements |
| **Mechanics 1** | • Length and time
• Motion
• Mass and weight
• Density |
| **1** | Coordination and response
• Hormones in humans
• Tropic responses |
| **Reproduction in plants** | • Asexual and sexual reproduction
• Sexual reproduction in plants |
| **Covalent bonding** | • Molecules and covalent bonds |
| **Organic 1** | • Homologous series
• Fuels
• Alkanes
• Alkenes |
| **Electricity 2** | • Electric charge
• Circuit diagrams
• Series and parallel circuits
• Dangers of electricity |
| **Thermal physics** | • Simple kinetic model of matter
• Matter and thermal properties |
| **2** | Human reproduction
• Sexual reproduction in humans |
| **Organisms and environment** | • Organisms and their environment
• Human influences on ecosystems |
| **Amount of substance** | • Stoichiometry |
| **Redox, electrochemistry and Group VII** | • Redox
• Electricity and chemistry
• Extraction of metals from their ores
• Group properties |
| **Mechanics 2** | • Effects of forces
• Energy
• Work
• Power
• Pressure |
| **Waves** | • General wave properties
• Electromagnetic spectrum
• Sound |
| **3** | Mock examinations and revision |
Curriculum Overview: Coordinated Science

Please see the department MTP for a more in depth scheme of work.

<table>
<thead>
<tr>
<th>Year</th>
<th>Term</th>
<th>Unit/s of Work</th>
<th>Core Knowledge & Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>Cells and processes</td>
<td>● Characteristics of living things</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Cell structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Movement in and out of cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Enzymes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experimental techniques</td>
<td>● Measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Criteria of purity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Methods of purification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Particles, atomic structure, ionic</td>
<td>● The particulate nature of matter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bonding and the Periodic Table</td>
<td>● Atomic structure and periodic table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Elements, compounds and mixtures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Physical and chemical changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Properties of metals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Ions and ionic bonds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Energy in chemical reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● The periodic table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Periodic trends</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Stoichiometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Group properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light</td>
<td>● Reflection of light</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Refraction of light</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Thin converging lens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity 1</td>
<td>● Current, potential difference and EMF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Electrical energy</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Animal nutrition</td>
<td>● Biological molecules</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Diet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Alimentary canal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Digestion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plant nutrition and transport</td>
<td>● Plant nutrition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Photosynthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Transport in plants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air and water</td>
<td>● Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Noble gases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Carbon dioxide and methane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acids, bases and salts</td>
<td>● Stoichiometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● The characteristic properties of acids and bases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Nitrogen and fertilisers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Types of oxides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Preparation of salts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Identification of ions and gases</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Energy</td>
<td>● Energy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Energy resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Conduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Convection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Consequences of energy transfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Respiration and the human transport</td>
<td>● Respiration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>system</td>
<td>● Gas exchange</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Transport in mammals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reaction rates</td>
<td>● Rate of reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Energy changes in chemical reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metals and the reactivity series</td>
<td>● Properties of metals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Reactivity series</td>
</tr>
</tbody>
</table>
| 1 | 11 | Coordination, response and homeostasis | • Nervous control in humans
• Sense organs
• Hormones in humans
• Tropic responses
• Homeostasis |
|---|---|---|---|
| | | Reproduction in plants | • Asexual and sexual reproduction
• Cell division
• Sexual reproduction in plants |
| | | Covalent bonding | • Molecules and covalent bonds
• Macromolecules |
| | | Organic 1 | • Names of compounds
• Homologous series
• Fuels
• Alkanes
• Alkenes
• Synthetic polymers
• Alcohols |
| | | Electricity 2 | • Electric charge
• Circuit diagrams
• Series and parallel circuits
• Dangers of electricity |
| | | Thermal physics | • Simple kinetic model of matter
• Pressure changes
• Matter and thermal properties
• Measurement of temperature |
| 2 | | Human reproduction | • Sexual reproduction in humans |
| | | Organisms and environment | • Organisms and their environment
• Human influences on ecosystems |
| | | Amount of substance | • Stoichiometry
• The mole |
| | | Organic 2 | • Polymers
• Synthetic polymers |
| | | Mechanics 2 | • Effects of forces
• Turning effect
• Centre of mass
• Energy
• Work
• Power
• Pressure |
| 3 | | Inheritance and evolution | • Chromosomes and genes
• Monohybrid inheritance
• Variation and selection |
| | | Redox, electrochemistry and Group VII | • Redox
• Electricity and chemistry
• Extraction of metals from their ores
• Group properties |

At ASCOT, students develop according to their needs in a welcoming, family environment. The challenging curriculum enables our students to become adaptable lifelong learners. Our intercultural ethos strives to promote a strong sense of respect for all.
Curriculum Overview: Diploma Program Biology

Please see the department MTP for a more in depth scheme of work.

<table>
<thead>
<tr>
<th>Year</th>
<th>Term</th>
<th>Unit/s of Work</th>
<th>Core Knowledge & Concepts</th>
</tr>
</thead>
</table>
| 12 | 1 | Cell Biology | • Introduction to cells
 | | | • Ultrastructure of cells
 | | | • Membrane structure and transport
 | | | • Origin of cells |
| | | Molecular Biology | • Metabolism
 | | | • Water
 | | | • Carbohydrates and Lipids
 | | | • Proteins
 | | | • Enzymes
 | | | • DNA, RNA structure |
| | | Nucleic Acids | • DNA Replication
 | | | • Transcription and Gene expression
 | | | • Translation |
| 2 | | Metabolism | • Metabolism
 | | | • Cell respiration
 | | | • Photosynthesis |
| 3 | 1 | Genetics | • Genes
 | | | • Chromosomes
 | | | • Cell Division
 | | | • Meiosis
 | | | • Inheritance
 | | | • Genetic Modification and Biotechnology |
| 3 | 1 | Genetics and Evolution | • Meiosis
 | | | • Inheritance
 | | | • Gene Pools and Speciation |
| | | Evolution and Biodiversity | • Evidence for Evolution
 | | | • Natural Selection
 | | | • Classification
 | | | • Cladistics |
| | | Plant Biology | • Transport in xylem
 | | | • Transport in Phloem
 | | | • Growth
 | | | • Reproduction |
| 13 | 1 | Human Physiology | • Digestion
 | | | • Blood System
 | | | • Infectious Disease
 | | | • Gas Exchange
 | | | • Neurons and Synapses
 | | | • Hormones, Homeostasis, Reproduction |

At ASCOT, students develop according to their needs in a welcoming, family environment. The challenging curriculum enables our students to become adaptable lifelong learners. Our intercultural ethos strives to promote a strong sense of respect for all.
At ASCOT, students develop according to their needs in a welcoming, family environment. The challenging curriculum enables our students to become adaptable lifelong learners. Our intercultural ethos strives to promote a strong sense of respect for all.

Animal Physiology
- Antibody production and Vaccination
- Movement
- Kidney and Osmoregulation
- Sexual Reproduction

Ecology
- Species, Communities and Ecosystems
- Energy Flow
- Carbon Cycling
- Climate Change

Option
- Choice of:
 - Neurobiology and Behaviour
 - Biotechnology and Bioinformatics
 - Ecology and Conservation
 - Human Physiology

Revision and Examinations

Curriculum Overview: Diploma Program Chemistry

Please see the department MTP for a more in depth scheme of work.

<table>
<thead>
<tr>
<th>Year</th>
<th>Term</th>
<th>Unit/s of Work</th>
<th>Core Knowledge & Concepts</th>
</tr>
</thead>
</table>
| 12 | 1 | Stoichiometry and Atomic Structure | • Atomic Structure
• Electron Structure
• Chemical Calculations
• Emission Spectrometry |
| | | Bonding and Periodic Table | • Periodic Trends
• Trends within groups
• Intermolecular Forces
• Types of Bonding
• Molecular Orbitals
• Hybridization
• Coloured Complexes |
| 2 | 1 | Redox and Equilibrium | • Oxidation and Reduction
• Chemical Cells
• Equilibrium
• Le Chatelier's Principle |
| | | Acids | • Properties of Acids and Bases
• Strong and weak acids
• pH and pKa
• Buffers
• pH curves |
| 3 | 1 | Organic Chemistry | • Functional Groups
• Nomenclature
• Fundamentals of Organic Chemistry |
| | | Energetics | • Bond Enthalpies
• Hess’ Law |
| 13 | 1 | Rates and Kinetics | • Collision Theory
• Rate Expression
• Kinetics |
| | | Organic Chemistry | • Organic Reactions
• Synthetic Routes
• Stereosomerism |
| | | Mechanisms | • Choice of:
 o Materials
 o Biochemistry
 o Energy
 o Medicine |
| 3 | | Revision and Examinations | |
Curriculum Overview: Diploma Program Physics

Please see the department MTP for a more in depth scheme of work.

<table>
<thead>
<tr>
<th>Year</th>
<th>Term</th>
<th>Unit/s of Work</th>
<th>Core Knowledge & Concepts</th>
</tr>
</thead>
</table>
| 12 | 1 | Measurement and Uncertainties | - Measurement in Physics
- Uncertainties and errors
- Vectors and scalars |
| | | Mechanics | - Motion
- Forces
- Work, energy and power
- Momentum and Impulse |
| | | Waves | - Oscillation
- Travelling waves
- Wave characteristics
- Wave behaviour
- Standing waves |
| 3 | | Thermal Physics | - Thermal concepts
- Modelling a gas |
| 2 | | Wave Phenomena | - Simple harmonic motion
- Single-slit diffraction
- Interference
- Resolution
- Doppler effect |
| | | Electricity and Magnetism | - Electric fields
- Heating effect of currents
- Electric cells
- Magnetic effects of electric currents |
| 3 | | Circular Motion | - Circular motion
- Newton's law of gravitation |
| | | Electromagnetic Induction | - Electromagnetic induction
- Power generation and transmission
- Capacitance |
| 13 | 1 | Atomic, Nuclear and Particle Physics | - Discrete energy and radioactivity
- Nuclear reactions
- The structure of matter |
| | | Fields | - Describing fields
- Fields at work |
| 2 | | Energy Production | - Energy sources
- Thermal energy transfer |
| | | Quantum and Nuclear Physics | - The interaction of matter with radiation
- Nuclear physics |
| | | Option | - Choice of
 ○ Relativity
 ○ Engineering physics
 ○ Imaging
 ○ Astrophysics |
| 3 | | Revision and Examinations | |